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Abstract— Networked rural electrification can potentially 

improve energy resources utilization, reduce cost and 

enhance supply reliability. Identifying optimal connection 

paths is critical for proper network design. To overcome the 

inefficiency of applying standard A* path-finding method to 

complex topography, multiplier-accelerated A* (MAA*) 

algorithm, which utilizes a modified heuristic, has been 

developed in previous research. While MAA* can generally 

reduce computation time by ~90% at the cost of ~10% 

optimality, the computation burden can still be remarkable 

for some areas with intricate topological variations. This 

paper proposes an adaptive version of MAA*. By introducing 

intermediate nodes in MAA*, the new algorithm significantly 

simplifies computations in complex regions. This greatly 

facilitates the analysis and design of optimal network for 

cost-effective electricity supply to users in remote, difficult-

to-reach areas. 

Index Terms-- rural electrification; SDG7; A* algorithm; 

path finding. 

I. INTRODUCTION 

Enacted by United Nation [1], the seventh Sustainable 
Development Goal (SDG7) envisions affordable, reliable, 
sustainable and modern energy will be accessible to all by 
2030. As reported by recent studies [2,3], the progress of 
electrification is remarkable. Population without electricity 
access decreased from 1.2 billion to 840 million during 
2010-2017. On the other hand, the reports also pointed out 
the problem of rural-urban divide. Among the unserved 
population, 732 million people are living in rural areas. 
Electrification of these areas requires extra effort and could 
be costly due to increased complexity. For example, owing 
to uncertainties in resource and demand forecasts for small 
geographical areas, correct planning for renewable energy 
generation for individual village or small town is 

challenging. Longer-term, urbanization policy may 
unexpectedly impact population and hence energy demand 
[4-6]. In addition, location of the village or town may not 
be optimal for efficient generation [6-8].  

To facilitate electrification for these difficult areas, a 
networked rural electrification scheme has been proposed 
[9]. The scheme uses a cost-optimized network to connect 
villages in a wider area together, and each village is 
supplied by (i) centralized generation sites with good 
resources such as strong solar radiation and/or wind for 
efficient generation, and (ii) supplementary local 
generation modules that can be added or removed based 
upon local demand (Figure 1).  

 

 

Figure 1   Networked Rural Electrification 

 

Viability of this approach depends on the cost of 
building the network, and hence depends on correctly 
identifying an optimal, or near-optimal, connection 
topology that accounts for the topography of the area. To 
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properly design the network, the two steps are (i) finding 
(near) optimal paths for connecting any two villages, and 
also optimal paths connecting each village to the 
centralized generation sites, and (ii) synthesizing the 
lowest-cost connection topology based the optimal paths 
identified. While this approach is conceptually easy to 
understand, designing such a network is difficult in practice 
because of high computational complexity. This paper 
proposes an efficient algorithm that could significantly 
reduce the complexity and facilitate the design process. 

To perform the two mentioned tasks, standard methods 
are available. For example, the widely used A* search 
algorithm appears to be a reasonable solution for finding 
the paths, and minimum spanning tree (MST) can be used 
to obtain the minimum cost network. However, as 
explained in Section II, standard A* algorithm is very 
inefficient for this application and common acceleration 
techniques are also not applicable due to significant 
topological (cost) variations. Since hundreds of 
combinations may have to be evaluated, a fast method 
suitable for identifying optimal interconnection paths is 
highly desirable. This will become even important if there 
are considerable uncertainties in input map and many 
Monte Carlo simulations will be required to ensure 
robustness of the solution. Multiplier-accelerated A* 
(MAA*) algorithm [9] has hence been developed to 
improve the computational efficiency of pathfinding. While 
MAA* can generally reduce computation time by ~90% at 
the cost of ~10% optimality, the computational burden may 
still be large for areas with intricate topological variations. 
This paper proposes an adaptive version of MAA*. By 
introducing intermediate nodes in MAA*, the new 
algorithm significantly simplifies computations in complex 
regions. This greatly facilitates the analysis and design of 
optimal network for cost-effective electricity supply to 
users in remote, difficult-to-reach areas. 

 

II. BRIEF REVIEW OF MULTIPLIER-ACCELERATED A* 

ALGORITHM  AND IT’S PERFORMANCE 

Although A* is a proven algorithm for optimal path 
finding, computation complexity is problematic when 
applied to a large search space. Complexity of the 
algorithm is described by O(bϵd) [10], where b is the 
branching factor, ϵ is the error in heuristic estimate defined 
as  (h* - h)/h* (where h* and h are the actual and estimated 
cost from the node to final goal), and d is the solution depth 
– i.e. the path length in this application. Figure 2 illustrates 
the effect of ϵ and d under a branching factor of, for 
example, 2.13 with constant step cost. 

 

Figure 2    Time complexity vs search depth 

 

As seen, time complexity increases exponentially when 
the heuristic error ϵ and the solution depth d increase even 
under constant step cost assumption. To improve 
computation efficiency, there are  two approaches: (i) 
reducing d by simplifying the search space, and (ii) 
reducing ϵ by designing better heuristic estimates.  

For some applications (e.g. video games), simplifying 
search space is quite straight-forward. Methods such as 
Quadtree, NavMesh etc. essentially divide space into 
simple geometric shapes and use a significantly fewer 
waypoints to represent these shapes and hence resulting a 
much smaller d [11, 12]. Standard A* algorithm can then 
be applied to these waypoints. Many other acceleration 
techniques [13, 14] are also based on different geometric 
simplifications. Viability of geometric simplification 
depends heavily on isotopicity of the search space. For 
networked rural electrification, these techniques are not 
applicable because varying topography leads to a high 
degree of cost anisotropicity. The search space, therefore, 
cannot be effectively reduced. 

Reducing error in the heuristic estimate is even more 
challenging since ϵ is highly dependent on the properties of 
the search space. Using a simple heuristic estimate to 
closely track the actual cost throughout the entire space is 
not usually achievable, and the high degree of 
anisotropicity in this application will lead to even larger ϵ. 
Researchers have developed more sophisticate heuristic 
estimates in order to reduce complexity [15-17], but most 
of these methods are only applicable under some specific 
conditions. For networked rural electrification, search space 
may take any physical form and these methods are not 
directly relevant. 

Multiplier-accelerated A* (MAA*) Algorithm was 
developed to tackle this problem. Essentially, MAA* is an 
algebraic, instead of geometric, search space reduction 
method that selectively ignores, instead of reduces, error in 
heuristic estimate.  The principle is illustrated in Figure 3. 

 



 

Figure 3   Multiplier-accelerated A* algorithm 

 

The heuristic cost (H) in MAA* is a modulated R2 
Euclidean distance that decreases as the current search 
point becomes closer to the end point. 

H = U × ( 1 + m × U / L ) (1) 

where  U is the R2 distance between current and end 
points 

L is the R2 distance between start and end points 

m is the heuristic multiplier 

In a canonical A* algorithm, when ϵ is large, the search 
jumps back to earlier paths in the open list and restarts 
frequently due to wrong cost estimation. If degree of 
anisotropicity is high, the search may even return to early 
search nodes from late stage search nodes because the 
range of estimated cost of the early nodes can vary widely 
under these topologies. However, restarting from very early 
nodes will unlikely lead to a better path due, again, to large 
ϵ. Therefore, the rationale of Equation (1) is to exaggerate 
the heuristic cost for nodes far away from the destination, 
and hence reduce the chance of jumping back to very early 
nodes during the later stages of the search.  Effectively, 
MAA* reduces the search space by ignoring some error-
driven search incentive when those incentives would be 
unlikely to lead to better paths. However, it is important to 
realize that MAA*, unlike A*, cannot guarantee optimality 
since the modulated heuristic cost H may over-estimate 
actual cost and hence may violate admissibility criterion of 
A*[18]. To trade-off between optimality and computation 
complexity, user can choose different values of m and c, 
which, respectively, define the level of exaggeration of the 
heuristic cost of distant nodes and the region in which to 
resume, if preferred, to standard A* algorithm.  

Figure 3 and Table 1 illustrate the performance of 
MAA* algorithm. Computation time and optimality are 
used as metrics. Although computation time is not an 
authoritative measure – it will vary with coding quality and 
machine loading – the results can still clearly demonstrate 
the advantage of the new algorithm. 

Calculations are based on a 30 x 30 demonstrative map, 
with a cost function composed of (i) path length, (ii) 
incremental costs due to changing elevation in routing, and 

(iii) accessibility of the locations along the path. Similar 
results are observed with a larger and more realistic 300 x 
300 map (Figure 4). Details are provided in [9]. 

When c is fixed at 10 and m is small (0.1, 0.2 or 0.5), 
the path identified by MAA* is very close to (or exactly the 
same as) the global minimum found by standard A* 
algorithm. Computation time has reduced but remains in 
the same order of magnitude.  

When larger m is used (1 or 2), location the path 
identified deviates remarkably from the global minimum 
but the cost is not very different. On the other hand, 
computation time has been reduced very significantly. In 
other words, it is a near-optimal path that requires much 
less time to identify. 

 

 

Figure 3   Optimal paths connecting (14,21) and (34,29) 

 

For practical purposes, small cost over-estimation 
should be acceptable since maps created from surveys or 
aerial (satellite or unmanned aerial vehicle) photography 
will also have intrinsic tolerances at comparable level. 

Table 1   Optimal connection between (14,21) and (34,29) 

Connection: (14,21) - (34,29)

Computed 

Optimal Cost

Computation 

Time (sec)

Normalized 

Computation 

Time

% Over-

estimate

Standard A* 47.9 198.6 100.0% 0.0%

Accelerated A*

m = 0.1 47.9 169.8 85.5% 0.0%

m = 0.2 47.9 146.9 74.0% 0.0%

m = 0.5 48.8 117.7 59.3% 1.9%

m = 1 50.7 20.3 10.2% 5.8%

m = 2 50.7 5.8 2.9% 5.8%

m = 5 58.6 3.9 2.0% 22.3%
 

 

In the above example, MAA* has significantly 
accelerated (near) optimal path finding under anisotropic 
search space, thereby accelerating networked rural 
electrification routing. 

 

 

III. LIMITATION OF MULTIPLIER-ACCELERATED A* 

ALGORITHM 

Generally, MAA* remains effective even for large, 
anisotropic map. However, the search space reduction 



strategy used by the algorithm may not work well for some 
very complex topologies.  

In Figure 4, there are two target connections A and B 
on a 300x300 grid. Connection A is a typical connection 
and MAA* can efficiently identify the (near) optimal path 
for connecting the villages. Connection B, however, is very 
different. Both start and end nodes, although not far away, 
are lying within a region of low accessibility (i.e. the blue 
rectangle). In addition to topographical variation, many 
locations in this region are difficult to access due to natural 
or human-related reasons. High cost nodes within the 
region can lead to drastic path cost increase in each step of 
movement inside the region; i.e. ϵ is large.  

 

 

Figure 4  Performance of MAA* on a 300 x 300 map 

If human intuition is used for routing, one would likely 
exit the region as quickly as possible to skirt the difficult 
area. This is consistent with results using MAA* (Figure 5, 
for m=5 and 10). Unfortunately, the MAA* computation 
time for this case is extremely long even for relatively large 
m. 

 

 

Figure 5  Searching costly zone 

 

As in all cases, large ϵ will lead to exponentially 
increasing computation burden as per O(bϵd). However, this 
specific problem can be qualitatively understood as a high 
frequency switching, or path oscillation, between search 
paths inside and outside of the difficult region. High cost 
paths within the region have made the long paths outside of 
the region comparatively inexpensive. As the search within 
the region begins, it soon encounters move so expensive 
that the algorithm infers that some paths outside of the 
region could be possibly be less expensive.  The algorithm 
then commences to explore these outside paths. The outside 
search remains favorable for many steps because the step 
cost increment, in general, will be less than the step cost 
increment within the region. However, after many steps, 
the outside exploration accumulates sufficient path cost that 
it becomes more expensive than the previous search path 
within the region. The algorithm then jumps back into the 
region to continue the search. However, since the single 
step cost in the region is large, cost of the inside search 
path will soon become more expensive than outside paths 
stored in the open list. The algorithm will again jump to the 
outside paths and continue for quite some more steps, and 
then jump back to inside paths. The process repeats 
inefficiently in this mode. In fact, using MAA* (m=5) to 
find the optimal path for Connection A only creates a 
closed list (i.e. nodes being completely explored) of size 
557, but the corresponding list size for Connection B is 
22,555. This means that only 0.6% of the search space 
needs to be explored in case of Connection A, but 25% in 
case of Connection B despites it appears to be much 
shorter. 

Thus, even with MAA*, computation time is too long 
to be practical unless m is very large. However, when m is 
large, optimality of the solution is questionable. As shown 
in Figure 5, MAA* can complete the computation in about 
9 minutes when m=30, but the solution is obviously far 
from optimal. When smaller m is used, optimality is 
improved but computation time is too long (Table 2). 

 

Table 2  MAA* computation time for Connection B (on i5 machine with 
typical configuration) 

 

 

 

IV. ADAPTIVE MULTIPLIER-ACCELERATED A* 

ALOGRITHM 

To tackle difficult regions, the adaptive multiplier-
accelerated A* (AMAA*) algorithm has been developed. 

As illustrated in section III, the problem originates from 
frequent switching between inside and outside search paths, 



which is fundamentally rooted at the large ϵ in the difficult 
region. Thus, instead of performing search solely based on 
cost comparison, AMAA* uses a directed search approach 
based on a projection of ϵ. This is done by adaptively 
defining and inserting intermediate nodes (P1 and P2 in 
Figure 6) according to the specific structure of the search 
space, and then applying MAA* algorithm to the newly 
constructed line segments.   

 

 

Figure 6   Principle of AMAA* 

 

 Intermediate node(s) are defined based upon (i) 
location desirability, and (ii) minimization of ϵ. 

If one starts at (110, 140), an intermediate node on its 
slight right is more desired than a node on slight left 
because the former is closer to the destination (180, 180). 
Similarly, a node slightly above is preferred over a node 
slightly below. For minimal ϵ, direct calculation is possible 
but computational quite heavy. Therefore, it is indirectly 
measured by examining the coarse cost of movement in a 
number of directions. Scores are assigned to potential 
candidates based on the two criteria. The method is 
illustrated in Figure 7. 

 

 

Figure 7    Screening for intermediate node 

 

(i) Place k evenly distributed concentric circles on the 
start node such that the final circle passes through the 
end node; 

(ii) Draw a line passing through the start and end nodes. 
Label the intersection closest the end node as “0”; 

(iii) Draw r-1 lines passing through the start node so that 
the concentric circles are evenly divided. Label each 
radii sequentially. 

This creates 2kr points formed by the intersections of 
the lines and circles. These are potential candidates for 
intermediate nodes. For convenient programming, 
evaluation is done as follow. 

(iv) For the 2r nodes on each circle, calculate the R2 
distance to the end node, compared to the R2 distance 
between start node and end node to create a 
normalized score, L. A negative change indicates 
movement towards the destination and will be assigned 
with a low L. In this scheme, a low score indicates 
high desirability. Normalization is necessary because 
measured parameters will be different for different 
circles; 

(v) For the 2r nodes on each circle, costs for moving from 
start node to these nodes are calculated and normalized 
by corresponding R2 distance, and denoted as D. Thus, 
by examining the change in D along the k nodes on 
one of the 2r arrows, one can coarsely deduce the 
difficulty for moving in that direction and hence 
estimate whether ϵ is increasing or decreasing; 

(vi) The final score for each point is obtained by 
multiplying L and D.  

 

Due to length limitation, computational details are not 

discussed in this paper. In addition, alternative methods for 

creating additional intersections that enhance optimality 

are also skipped. However, Tables 3 and 4 illustrate how 

the method works in practice. 

 
With k=10 and r=5, there will be 100 potential 

candidates. The analyses are tabulated in 10 tables based on 
the k circles, and summarized in one additional table. Table 
3 is the second of the 10 tables, and serves as an illustration 
of the format and information contained. 

 

Table 3   Analysis of circle 2 

 

 

By combining the 10 tables, a summary of final score 
for all 100 candidates is obtained (Table 4). 

 

 



Table 4   Summary of final score 

 

 

Inspecting all the directions, it has been found that the 
scores in direction 3 decrease quickly and remain stable 
after decreasing, even though the initial score at circle 1 is 
high. This indicates that moving along direction 3 is (i) not 
expensive (D score) and (ii) not moving too far away from 
the destination (L score). In contrast, early scores for 
direction 0, 1 and 2 are low, but increase markedly when 
moving toward the outer circles; these directions are 
expensive and should be avoided. It is to be noted that 
direction 8 is also a possible choice, but further illustration 
is skipped due to space constraints. 

It is desirable to move to low score area as soon as 
possible. Since direction 3 attains a low final score at circle 
2, the intersection is chosen as an intermediate node. 
Coordinates of this node, according to Table 4, are (98, 
150). The method can also be applied to the end node 
(180,180), obtaining the intermediate point (162,196). 
MAA* algorithm is then applied to (110,140)-(98,150), 
(98,150)-(162,196), and (180,180)-(162,196) to find the 
final path (Figure 8) 

 

 

Figure 8   Optimal path finding by AMAA* 

 

Results obtained by using AMAA* algorithm are 
summarized in Table 5. 

 

Table 5   Computation results, AMAA* 

 

 

Compared to Table 2, speed improvement is achieved 
by AMAA*. When m=1, MAA* and AMAA* are 
delivering the same optimality (932.43 vs 934.83), but the 
former took 664h to compute while the later only took 
1.7h. With larger m, the improvement is even more 
significant. For example, AMAA* provides both better 
optimality and computation efficiency when m=5. Table 6 
summarizes the differences.  

 

Table 6   Comparing AMAA* to MAA* 

 

 

As qualitatively discussed in section III, frequent 
switching between paths inside and outside of the high cost 
region causes significant computational load. This section 
quantitatively demonstrated this excess load, and provided 
an effective method to avoid it.  With AMAA*, it is 
practically feasible to solve optimal path finding problems 
under very complex topography. However, it should be 
emphasized that AMAA*, like any other heuristic search 
methods, cannot guarantee optimality.  

 

V. CONCLUSION 

Achieving SDG7 by providing affordable, reliable, 
sustainable, and modern energy to all in 2030 is 
challenging. Networked rural electrification can potentially 
accelerate the process by reducing system cost, enhancing 
reliability, and offering installation flexibility. However, 
designing the required optimal network under some 
complex topographies could be computationally 
prohibitive. In this paper, it has been demonstrated that 
AMAA* algorithm can resolve the computation issue for 
some complex situations, and hence facilitate networked 
rural electrification. Since AMMA* focuses solely on 
optimal path finding, further works of developing an 
integrated framework for complete network synthesis is 
desirable.  
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