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Abstract—This analysis proposes a modified A* routing 

algorithm for the routing of networked rural electrification 

systems in areas with substantial topological variation.  Due 

to geographical complexity, using standard A* algorithm for 

optimal routing is very inefficient. This new algorithm 

utilizes a modified heuristic to reduce computational time 

while achieving near-optimal routing results. The modified 

algorithm is also more suitable for use in routing studies 

where inputs are uncertain, requiring Monte Carlo 

simulations to assess the robustness of proposed routes. 

Index Terms--A* algorithm; rural electrification; path 

finding. 

I. INTRODUCTION 

Identifying optimal connection path is a common 
problem for developing networked systems such as an 
electric grid, transportation network, and even integrated 
circuits. The A* algorithm is most widely used for this 
purpose. However, different applications have specific 
constraints and researchers have modified the standard 
algorithm to fulfill these requirements. This paper proposes 
a modified A* algorithm and compares it with the standard 
A* algorithm when finding the optimal path for distribution 
networks between villages in rural electrification 
applications.  

The problem originates from the difficulty of correct 
planning for small scale renewable energy generation for 
villages or small towns. While solar and wind generations 
are technologically mature, designing a near-optimal 
system for a small area remains challenging: 

(a) Planning – for an individual village, resource (i.e. 
solar radiation and wind) forecasts based on large-area 
statistics are often unreliable due to the small geographical 
area and local topology and ground cover. Similarly, 
forecasting short-term demand is also challenging for a 

small number of users.  Mid-to-long term demand forecast 
relies heavily on accurate projection of the village 
population and activities, which is generally unknown at 
the planning stage. Thus, over-planning and under-planning 
are quite common for such small-scale projects [1,2,3]. 

(b)  Resources utilization – village locations are 
historical and chosen for access to water, good soil, food 
storage, etc, rather than strong solar and wind resources. As 
such, the villages may not be located in good locations for 
effective solar and wind power generation. Therefore, if 
generation development is restricted to village locations, 
more equipment and land will be required to generate the 
same amount of energy. [3,4,5]. 

These two problems can be addressed if development 
considers a cost-effective network that connects the 
villages together. Each village will then be supplied by (i) 
centralized generation sites with strong solar and/or wind 
resources, and supplemented by (ii) local generation 
modules that can be added or removed based upon local 
demand (Figure 1.1). 

 

 

Figure 1.1   Proposed configuration 
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In addition to optimizing capital investment and 
resource utilization, this approach can also improve 
reliability by interconnecting loads with multiple resources. 
However, the cost-effectiveness of this approach 
substantially depends on the cost of building the network, 
which, in turn, depends on selecting an optimal, or near-
optimal, connection topology that considers the topology of 
the area. The two steps for designing such a network are, 
respectively, (i) finding (near) optimal paths (i.e. lowest 
cost paths) for connecting any two villages and/or 
connecting any village(s) to centralized generation sites, 
and (ii) network synthesis based the optimal paths 
identified.  

While standard methods are available for performing 
the two tasks, modifications can be made to address 
specific challenges associated with this rural electric 
network design. This paper focuses on the first task, i.e., 
optimal path finding.  Figure 1.2 is a small digitized map 
for illustration, show the two cases used for this study. In 
practice, much higher resolution maps would be utilized, 
typically created from surveys or aerial (satellite or 
unmanned aerial vehicle) photography.  

 

 

Figure 1.2   Illustrative map 

 

II. A* AND MULTIPLIER-ACCELERATED A* 

ALGORITHMS  FOR OPTIMAL PATH FINDING 

A* algorithm is proven and widely used for optimal 
path finding. Briefly, the algorithm maintains a list of paths 
originated from the starting point, and, at each iteration, 
extends a chosen path by one movement until the end point 
is reached or some termination criteria are satisfied. The 
algorithm selects a path for extension basing on the 
minimization of an estimated cost. In standard A* 
algorithm, this estimated cost is the sum of two 
components. The first component, denoted by G, is the 
actual cost for moving from the starting point to the current 
location on the path. The second component, denoted by H, 
is a heuristic estimation of the cost for moving from the 
current position to the end point  [6].  

To apply A* algorithm to this specific rural 
electrification problem, the cost function has to be defined 
accordingly. The first component, G, consists of:  

(i) Path length - directly proportional to cost; 

(ii) Incremental costs due to changing elevation - In 
actual project implementation, changing elevation 

will not only increase the path length, but also 
increases cost due to additional works required; 

(iii) Accessibility – some locations are more difficult 
to access and traversing them increases the cost. 
For example, it is more costly to route cables 
through a wetland. 

Thus, the cost of the (i+1)-th movement in the A* 
search is represented by: 

 

Ci+1 = [(hi+1 - hi )2 + ( xi+1 - xi )2 + ( yi+1 - yi )2 ]1/2  

+ w1 | hi+1 - hi | + w2 ai+1 (1) 

 

 

where  

xi, yi, hi, ai are, respectively the coordinates, altitude 
and accessibility of the i-th point on paths in Figure 
1.1. For this analysis, xi, yi ϵ {11-40}, hi ϵ {1, 2, 3} 
and ai ϵ {0, 3, 10}; 

w1, w2 are the weighting coefficients. Their selection 
can be affected by technical capability, equipment 
availability, material and labor cost, etc. For this 
analysis, w1 = 6 and w2 = 3. 

Heuristic cost H is simply the Euclidean (R2) distance 
in the x,y plane between the end point and the current point 
of the search path. 

 

A. Limitations of standard A* Algorithm 

On each iteration, A* algorithm switches search paths 
and makes movement based on comparing the estimated 
cost at the current search position to the estimated costs of 
a list of previous explored positions.  

In similar A* path-finding applications, such as 
computer games, the ‘land’ is flat, coordinates typically 
marked as either “walkable” or “non-walkable”, and 
elevation change happens at a small number of coordinates. 
These constraints reduce search complexity, and typically 
only a small number of coordinates on the map need to be 
explored [7,8]. In contrast, for this problem elevation and 
accessibility (see Figure 1.2) can change drastically within 
a small subset of the map. Furthermore, there are very few 
“non-walkable” coordinates because remote villages are, 
almost by definition, difficult to access, yet all need to be 
included in the distribution system.  Therefore, all 
coordinates are accessible but the cost to access each 
coordinate varies substantially.  

These differences challenge A* path-finding and 
common A* acceleration methods when applied to this 
rural electrification problem. Given these map 
characteristics, the standard A* algorithm has a high 
probably of switching search paths on each iteration. In 
many cases, the search must be reinitiated from relatively 
early positions of previously explored paths. Although the 
algorithm will eventually converge, frequent switching 
increases the computation burden, and as we will show, 
makes direct application of the standard algorithm 
intractable. Common acceleration techniques (e.g. 
quadtree, navigation mesh, jump point search, etc. 
[7,8,9,10]) are, as many of them are formulated for 



computer games, also inapplicable due to frequent and 
potentially large changes in elevation and accessibility.  

To synthesize the final network, optimal paths 
connecting all point-pair on the map have to be determined. 
While computation burden may not be critical for one 
single optimal path finding exercise on a small map such as 
Figure 1.2, it is an important factor in practice when there 
are large number of locations on a realistically sized map 
(Figure 2.1). 

 

 

Figure 2.1   Example of a practical map 

 

B. Multiplier-accelerated A* algorithm 

While many known acceleration techniques such as 
quadtree and JPS are not applicable to this analysis, the A* 
algorithm can be accelerated if we reduce the probability 
that the algorithm will jump back to earlier locations during 
later stages of the search. This can be done by exaggerating 
the heuristic cost for the earlier points using a multiplier. 
Figure 2.2 illustrates the structure of the proposed 
multiplier-accelerated A* algorithm. 

 

 

Figure 2.2   Multiplier-accelerated A* algorithm 

 

As shown, the heuristic cost (H) is, instead of simply 
the Euclidean distance on plane, modulated by a coefficient 
that decreases as the current point is getting closer to the 
end point:    

H = U × ( 1 + m × U / L ) (2) 

 

where  U is the R2 distance between current and end 
points 

L is the R2 distance between start and end points 

m is the heuristic multiplier 

 

Equation (2) is applied when the current point of the 
search path is outside of the cut-off region, shown as the 
circle in the figure. Choosing appropriate multiplier m and 
the cut-off length c, the heuristic cost function H has been 
artificially inflated and A* algorithm is less likely to jump 
back to earlier starting points as the H becomes larger. 
When the search path enters the cut-off region (circle 
defined by radius c), H reverts to the normal heuristic 
completes the routing as the standard A* algorithm.  

While the proposed weighting for H accelerates the A* 
algorithm, the new heuristic may violate the fundamental 
constraint of A* that the heuristic is never higher than the 
optimal path cost between the current and destination 
locations. That is, heuristic must not be overestimated. 
Therefore, the modified algorithm may not converge to the 
global optimal path for higher values of m.  The question, 
then, is whether the modified algorithm produces sufficient 
computational savings, and produces nearly-enough 
optimal paths, to warrant its use. 

Another important aspect of this problem is that the 
input map, as shown in Figure 1.2, is not perfectly known.  
Since there is uncertainty in the values at each grid square, 
it is often useful to use Monte Carlo methods to analyze the 
robustness of a solution relative to variations in input data.  
This type of analysis typically needs to perform hundreds, 
if not thousands, of routings, to analyze whether a proposed 
routing would be substantially modified for expected 
variations in the input data. 

 

III. SIMULATION RESULTS AND DISCUSSIONS 

A Python program has been developed to execute both 
algorithms for tests using both routes on the map in Figure 
1.2. Computation time is used as a rough indicator for 
computation burden and reported for a Pentium 2020m PC 
with typical settings. While this is not a robust indicator of 
computational effort (results could be affected by the status 
other background processes on the computer), it provides a 
comparable metric provided all trials were conducted on 
the same machine, with same software conditions. An 
analysis of the size of the path list (the ‘closed list’ in A* 
terminology) also provide computational insights. 
However, this paper is exploratory in nature, and only the 
computational measurement is reported here. 

In the following analyses, the cut-off length (c) is 
chosen to be 10. This represents 30-40% of the length of 



the straight line connecting the start and end points. 
Therefore, the heuristic is modified for 60-70% of the R2 
distance between start and end points. We first analyze the 
impact of varying the heuristic multiplier, m, and later 
analyze the impact of varying the cut-off length, c. 

 

A. Case 1 – Connecting (14,21) and (34,29) 

Table 3.1 summarizes the computed paths connecting 
(14,21) and (34,29) in Figure 1.2.  The path from the 
standard A* algorithm is optimal, and the path from 
multiplier-accelerated A* algorithms vary in optimality. 
The physical shape of these paths is shown in Figure 3.1. 

 

Table 3.1   Optimal connection between (14,21) and (34,29) 

Connection: (14,21) - (34,29)

Computed 

Optimal Cost

Computation 

Time (sec)

Normalized 

Computation 

Time

% Over-

estimate

Standard A* 47.9 198.6 100.0% 0.0%

Accelerated A*

m = 0.1 47.9 169.8 85.5% 0.0%

m = 0.2 47.9 146.9 74.0% 0.0%

m = 0.5 48.8 117.7 59.3% 1.9%

m = 1 50.7 20.3 10.2% 5.8%

m = 2 50.7 5.8 2.9% 5.8%

m = 5 58.6 3.9 2.0% 22.3%
 

 

 

Figure 3.1   Optimal paths connecting (14,21) and (34,29) 

 

The standard A* algorithm identifies the optimal cost as 
47.9, a 59.3% reduction from a straight-line between the 
points. This optimal cost is used as benchmark for 
evaluating the performance of multiplier-accelerated A* 
algorithm. 

For multipliers of m=0.1 and 0.2, the modified 
algorithm finds paths with the same cost as the optimal 
path, and these paths track closely to the routing of the 
optimal path computed by standard A* algorithm. No over-
estimation is observed. Computation time, however, has 
been reduced by 14.5% and 26% respectively. 

At a higher multiplier of m=0.5, the modified algorithm 
deviates from the standard algorithm, the path tracks less 
well, and the resulting path is 1.9% more costly than 
optimal.  However, a reduction in computational time by 
40.7% makes the performance tradeoff interesting, 
particularly for large problems. When multipliers of m=1 
and 2 are used, tracking errors increase further and both 

lead to an over-estimation of 5.8%. However, computation 
time has been very significantly reduced by 89.8% and 
97.1% respectively. 

Finally, at a multiplier of m=5, the modified algorithm 
starts to follow the suboptimal direct path and reports a 
substantially sub-optimal result that is 22.3% higher cost 
than optimal, although the computation time has been 
reduced by 98%. 

In practice, small errors in initial routing will be 
acceptable in most cases, since the problem statement 
cannot capture all possible impacts on cost in any case.  For 
example, factors such as workmanship deviations, material 
transportation, consumer preference, changing land 
conditions, and even local politics, also contribute 
considerably to the costs of installing a distribution line, 
and the unknown variances in these costs may well exceed 
the difference between reported and optimal paths. As 
such, results from the multiplier-accelerated A* algorithm 
are acceptable for connecting (14,21) and (34,29) when m 
= 0.1, 0.2, 0.5, 1 and 2. These results cannot be generalized 
because the results are affected by the actual structure of 
the area being analyzed, as shown in the following 
example. 

 

B. Case 2 – Connecting (14,38)-(35,12) 

Table 3.2 shows the same data as Table 3.1, for 

connecting (14,38) and (35,12) in Figure 1.2, and the 

physical shape of these paths is shown in Figure 3.2. 

 

 
Table 3.2   Optimal connection between (14,38) and (35,12) 

Connection: (14,38) - (35,12)

Computed 

Optimal Cost

Computation 

Time (sec)

Normalized 

Computation 

Time

% Over-

estimate

Standard A* 51.7 308.1 100.0% 0.0%

Accelerated A*

m = 0.1 51.7 264.6 85.9% 0.0%

m = 0.2 51.7 239.2 77.6% 0.0%

m = 0.5 52.5 134.3 43.6% 1.6%

m = 1 54.9 64.6 21.0% 6.2%

m = 2 57.8 10.2 3.3% 11.9%

m = 5 82.2 8.2 2.7% 59.0%
 

 

 

Figure 3.2   Optimal paths connecting (14,38) and (35,12) 

 



For this path, the standard A* algorithm gives an 
optimal cost of 51.7, which is a 60.1% reduction from the 
straight-line connection cost. As in the first example, 
multipliers of m=0.1 and 0.2 also find the optimal path but 
reduce computational time by 14.1% and 22.4% 
respectively. 

Similarly, middle values of the multiplier m=0.5 and 
1.0 produce near-optimal paths (cost increased by 1.6% and 
6.2% respectively), while reducing computational time 
56.4% and 79% respectively.  As indicated above, these 
errors are likely acceptable in practical terms. 

For this pair of start and end points, multipliers of m=2 
and 5 exhibit substantial tracking errors and associated 
suboptimal costs that are 11.9% and 59.0% higher than 
optimum.  Computational savings are significant, however, 
with reductions of 96.7% and 97.3%, respectively. 

Comparing the two cases, similar trends are observed, 
but suboptimality becomes substantial at higher values of 
m. 

 

C. Impact of Cut-off Value, c 

Table 3.3 varies the cutoff, c, for two values of the 

multiplier, m. In general, a larger value of c will force the 

algorithm revert to the standard A* algorithm earlier in the 

search exploration.  This may improve results, typically at 

the cost of higher computational effort. 

 

 
Table 3.3   Computed optimal cost vs cut-off length 

Connection: (14,38) - (35,12)

m = 2 m = 5

Computed 

Optimal Cost

Computation 

Time

Increase in 

Computation 

Time

Computed 

Optimal Cost

Computation 

Time

Increase in 

Computation 

Time

c = 0 57.84 8.69 -15.1% 82.19 2.2 -73.2%

c = 5 57.84 8.58 -16.1% 82.19 2.52 -69.3%

c = 10 57.84 10.23 0.0% 82.19 8.22 0.0%

c = 15 57.74 16.2 58.4% 82.19 11.69 42.2%

c = 20 56.92 41.15 302.2% 70.38 35.77 335.2%

c = 25 56.09 114.11 1015.4% 69.55 54.72 565.7%
 

 

Results indicate that higher values of c improve 

results, but computational time increases rapidly for c>10. 

This is caused by the algorithm investigating larger areas 

near the end of the search, and possibly traversing regions 

near the previously chosen near-optimal path. Compared 

to the nominal results with c=10, it is not worth using 

larger c to improve estimations in the test cases performed 

here.  

 

 

IV. CONCLUSION 

In rural electrification, using distribution networks to 
interconnect villages can potentially improve the efficiency 
of energy resource utilization and improve supply 
reliability. However, the cost of building the distribution 
network is justified by potential savings. To minimize the 
cost of such a system, the costs for cable routing between 
any two villages in the concerned area have to be 
evaluated. While standard A* algorithm and typical 
accelerators can be used for these calculations, the 
computation burden is very large due to complex 
topography in practical rural areas. Computational costs are 
also important due to the uncertainty in the map itself, 
which may require many routings to be calculated with 
variations in the map inputs.  

Based upon testing, a small subset of which is shown 
here, the proposed multiplier-accelerated A* algorithm 
compares well to the standard A* algorithm for small 
multipliers, while saving substantial computational time. 
Although this cannot be over-generalized, additional 
experiments have shown that the results shown here are 
greatly amplified in larger practical maps, indicating that 
the improvements from the algorithm may be justified by 
the computational savings.  
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